示例
const getData = () => new Promise(resolve => setTimeout(() => resolve("data"), 1000))
async function test() {
const data = await getData()
console.log('data: ', data);
const data2 = await getData()
console.log('data2: ', data2);
return 'success'
}
// 这样的一个函数 应该再1秒后打印data 再过一秒打印data2 最后打印success
test().then(res => console.log(res))
思路
对于这个简单的案例来说,如果我们把它用generator函数表达,会是怎么样的呢?
function* testG() {
// await被编译成了yield
const data = yield getData()
console.log('data: ', data);
const data2 = yield getData()
console.log('data2: ', data2);
return 'success'
}
我们知道,generator函数是不会自动执行的,每一次调用它的next方法,会停留在下一个yield的位置。
利用这个特性,我们只要编写一个自动执行的函数,就可以让这个generator函数完全实现async函数的功能。
const getData = () => new Promise(resolve => setTimeout(() => resolve("data"), 1000))
var test = asyncToGenerator(
function* testG() {
// await被编译成了yield
const data = yield getData()
console.log('data: ', data);
const data2 = yield getData()
console.log('data2: ', data2);
return 'success'
}
)
test().then(res => console.log(res))
那么大体上的思路已经确定了,asyncToGenerator接受一个generator函数,返回一个promise,
关键就在于,里面用yield来划分的异步流程,应该如何自动执行。
如果是手动执行
在编写这个函数之前,我们先模拟手动去调用这个generator函数去一步步的把流程走完,有助于后面的思考。
function* testG() {
// await被编译成了yield
const data = yield getData()
console.log('data: ', data);
const data2 = yield getData()
console.log('data2: ', data2);
return 'success'
}
我们先调用testG生成一个迭代器
// 返回了一个迭代器
var gen = testG()
然后开始执行第一次next
// 第一次调用next 停留在第一个yield的位置
// 返回的promise里 包含了data需要的数据
var dataPromise = gen.next()
这里返回了一个promise,就是第一次getData()所返回的promise,注意
const data = yield getData()
这段代码要切割成左右两部分来看,第一次调用next,其实只是停留在了yield getData()这里,data的值并没有被确定。
那么什么时候data的值会被确定呢?
下一次调用next的时候,传的参数会被作为上一个yield前面接受的值,也就是说,我们再次调用gen.next(‘这个参数才会被赋给data变量’)的时候,data的值才会被确定为’这个参数才会被赋给data变量’
gen.next('这个参数才会被赋给data变量')
// 然后这里的data才有值
const data = yield getData()
// 然后打印出data
console.log('data: ', data);
// 然后继续走到下一个yield
const data2 = yield getData()
然后往下执行,直到遇到下一个yield,继续这样的流程…
这是generator函数设计的一个比较难理解的点,但是为了实现我们的目标,还是得去学习它~
借助这个特性,如果我们这样去控制yield的流程,是不是就能实现异步串行了?
function* testG() {
// await被编译成了yield
const data = yield getData()
console.log('data: ', data);
const data2 = yield getData()
console.log('data2: ', data2);
return 'success'
}
var gen = testG()
var dataPromise = gen.next()
dataPromise.then((value1) => {
// data1的value被拿到了 继续调用next并且传递给data
var data2Promise = gen.next(value1)
// console.log('data: ', data);
// 此时就会打印出data
data2Promise.value.then((value2) => {
// data2的value拿到了 继续调用next并且传递value2
gen.next(value2)
// console.log('data2: ', data2);
// 此时就会打印出data2
})
})
这样的一个看着像callback hell的调用,就可以让我们的generator函数把异步安排的明明白白。
实现
有了这样的思路,实现这个高阶函数就变得很简单了。
function asyncToGenerator(generatorFunc) {
// 返回的是一个新的函数
return function() {
// 先调用 generator 函数 生成迭代器
// 对应 var gen = testG()
const gen = generatorFunc.apply(this, arguments)
// 返回一个 promise 因为外部是用 .then 的方式 或者 await 的方式去使用这个函数的返回值的
// var test = asyncToGenerator(testG)
// test().then(res => console.log(res))
return new Promise((resolve, reject) => {
// 内部定义一个 step 函数,用来一步一步的跨过 yield 的阻碍
// key 有 next 和 throw 两种取值,分别对应了 gen 的 next 和 throw 方法
// arg 参数则是用来把 promise resolve 出来的值交给下一个 yield
function step(key, arg) {
let generatorResult
// 这个方法需要包裹在 try catch 中
// 如果报错了 就把 promise 给 reject 掉 外部通过 .catch 可以获取到错误
try {
generatorResult = gen[key](arg)
} catch (error) {
return reject(error)
}
// gen.next() 得到的结果是一个 { value, done } 的结构
const { value, done } = generatorResult
if (done) {
// 如果已经完成了,就直接 resolve 这个 promise
// 这个 done 是在最后一次调用 next 后才会为 true
// 以本文的例子来说,此时的结果是 { done: true, value: 'success' }
// 这个 value 也就是 generator 函数最后的返回值
return resolve(value)
} else {
// 除了最后结束的时候外,每次调用 gen.next()
// 其实是返回 { value: Promise, done: false } 的结构
// 这里要注意的是 Promise.resolve 可以接受一个 promise 为参数
// 并且这个 promise 参数被 resolve 的时候,这个 then 才会被调用
return Promise.resolve(
// 这个 value 对应的是 yield 后面的 promise
value
).then(
// value 这个 promise 被 resolve 的时候,就会执行 next
// 并且只要 done 不是 true 的时候,就会递归的往下解开 promise,对应
// gen.next().value.then(value => {
// gen.next(value).value.then(value2 => {
// gen.next()
//
// // 此时 done 为 true 了,整个 promise 被 resolve 了
// // 最外部的 test().then(res => console.log(res)) 的 then 就开始执行了
// })
// })
function onResolve(val) {
step("next", val)
},
// 如果 promise 被 reject 了,就再次进入 step 函数
// 不同的是,这次的 try catch 中调用的是 gen.throw(err)
// 那么自然就被 catch 到,然后把 promise 给 reject 掉啦
function onReject(err) {
step("throw", err)
},
)
}
}
step("next")
})
}
}